created at April 25, 2021
Rectangle
Area:
Perimeter:
L=2⋅(a+b) Moments of inertia:
Ix=12b⋅a3;Iy=12a⋅b3;Ixy=0;Iρ=Ix+Iy Moments of resistance:
Wx=6b⋅a2;Wy=6a⋅b2; Radius of inertia:
ix=2⋅3a;iy=2⋅3b; Moments of inertia for rotated axis
Consider axis Ox1y1, rotated relative to Oxy by angle α (see figure above). Then moments of inertia relative to these rotated axis can be found as:
Ix1=Ix⋅cos2(α)+Iy⋅sin2(α)−Ixy⋅sin(2⋅α) Iy1=Ix⋅sin2(α)+Iy⋅cos2(α)−Ixy⋅cos(2⋅α) Ix1y1=2Ix−Iy⋅sin(2⋅α)+Ixy⋅cos(2⋅α)