EN
RU
Sign Up
Login
Home
Courses
Simulation Library
Applications
Games
Ring
⇐ back
created at May 1, 2021
Ring
Let's introduce a variable:
α
=
d
D
\alpha = \frac{d}{D}
α
=
D
d
Area:
A
=
π
⋅
D
2
4
(
1
−
α
2
)
A=\frac{\pi\cdot D^{2}}{4}(1-\alpha^{2})
A
=
4
π
⋅
D
2
(
1
−
α
2
)
Moments of inertia:
I
x
=
I
y
=
π
⋅
D
4
6
4
(
1
−
α
4
)
;
I
ρ
=
π
⋅
D
4
3
2
(
1
−
α
4
)
I_{x}=I_{y}=\frac{\pi\cdot D^{4}}{64}(1-\alpha^{4});\quad I_{\rho}=\frac{\pi\cdot D^{4}}{32}(1-\alpha^{4})
I
x
=
I
y
=
6
4
π
⋅
D
4
(
1
−
α
4
)
;
I
ρ
=
3
2
π
⋅
D
4
(
1
−
α
4
)
Moments of resistance:
W
x
=
W
y
=
π
⋅
D
3
3
2
(
1
−
α
4
)
;
W
ρ
=
π
⋅
D
3
1
6
(
1
−
α
4
)
W_{x}=W_{y}=\frac{\pi\cdot D^{3}}{32}(1-\alpha^{4});\quad W_{\rho}=\frac{\pi\cdot D^{3}}{16}(1-\alpha^{4})
W
x
=
W
y
=
3
2
π
⋅
D
3
(
1
−
α
4
)
;
W
ρ
=
1
6
π
⋅
D
3
(
1
−
α
4
)
Radius of inertia:
i
x
=
i
y
=
D
4
1
+
α
2
i_{x}=i_{y}=\frac{D}{4}\sqrt{1 + \alpha^2}
i
x
=
i
y
=
4
D
1
+
α
2
download crossSection_ring.txt