created at May 1, 2021

Ring

Let's introduce a variable:

α=dD\alpha = \frac{d}{D}

Area:

A=πD24(1α2)A=\frac{\pi\cdot D^{2}}{4}(1-\alpha^{2})

Moments of inertia:

Ix=Iy=πD464(1α4);Iρ=πD432(1α4)I_{x}=I_{y}=\frac{\pi\cdot D^{4}}{64}(1-\alpha^{4});\quad I_{\rho}=\frac{\pi\cdot D^{4}}{32}(1-\alpha^{4})

Moments of resistance:

Wx=Wy=πD332(1α4);Wρ=πD316(1α4)W_{x}=W_{y}=\frac{\pi\cdot D^{3}}{32}(1-\alpha^{4});\quad W_{\rho}=\frac{\pi\cdot D^{3}}{16}(1-\alpha^{4})

Radius of inertia:

ix=iy=D41+α2i_{x}=i_{y}=\frac{D}{4}\sqrt{1 + \alpha^2}